Pressure & Density

May 02

1. A cylindrical block of wood has a cross-sectional area *A* and weight *W*. It is totally immersed in water with its axis vertical. The block experiences pressures p_t and p_b at its top and bottom surfaces respectively. Which of the following expressions is equal to the upthrust on the block?

A
$$(p_{b} - p_{t})A + W$$
 C $(p_{b} - p_{t})A$
B $(p_{b} - p_{t})$ **D** $(p_{b} - p_{t})A - W$

2. A mass of a liquid of density ρ is thoroughly mixed with an equal mass of another liquid of density 2ρ . No change of the total volume occurs. What is the density of the liquid mixture?

A
$$\frac{4}{3}\rho$$
 B $\frac{3}{2}\rho$ **C** $\frac{5}{3}\rho$ **D** 3ρ

Nov 02

3. At a depth of 20 cm in a liquid of density 1800 kgm⁻³, the pressure due to the liquid is *p*. Another liquid has a density of 1200 kgm⁻³.

What is the pressure due to this liquid at a depth of 60 cm?

$$A \frac{p}{2} B \frac{3p}{2} C 2p D$$

Nov 03

4. The graph shows how the pressure exerted by a liquid varies with depth below the surface.

30

What is the density of the liquid?

A 600 kgm⁻³ B 760 kgm⁻³ C 5900 kgm⁻³ D 7500 kgm⁻³

June 04

5. An object, immersed in a liquid in a tank, experiences an upthrust.

What is the physical reason for this upthrust?

A The density of the body differs from that of the liquid.

B The density of the liquid increases with depth.

C The pressure in the liquid increases with depth.

D The value of g in the liquid increases with depth.

Nov 04

6. The diagram shows two liquids, labelled P and Q, which do not mix. The liquids are in equilibrium in an open U-tube.

June 05

7. The hydrostatic pressure p at a depth h in a liquid of density ρ is given by the formula p = hp g.

Which equation, or principle of physics, is used in the derivation of this formula?

A density = mass ÷ volume

B potential energy = mgh

C atmospheric pressure decreases with height

D density increases with depth

Nov 05

8. Why does the pressure increase when a sealed container of gas is heated?

A The gas molecules collide more often with each other.

B The gas molecules expand when they are heated.

C The gas molecules travel faster and hit the walls of the container more often.

D There are more gas molecules present to collide with the walls of the container.

9. Liquids X and Y are stored in large open tanks. Liquids X and Y have densities of 800 kg m⁻³ and 1200 kg m⁻³ respectively. At what depths are the pressures equal?

J.	depth in liquid X	depth in liquid Y
A	8 m	12 m
в	10 m	10 m
с	15 m	10 m
D	18 m	8 m

Nov 06

10. Which force is caused by a pressure difference?

A friction B upthrust C viscous force D weight

11. A bore hole of depth 2000 m contains both oil and water as shown. The pressure at the bottom is

17.5 MPa. The density of the oil is 830 kg m $^{-3}$ and the density of the water is 1000 kg m $^{-3}.$

What is the depth x of the oil?A 907 mB 1000 mC 1090 m

Nov. 07

12. A submarine carries a pressure meter so that the crew can work out how far they are below the surface of the sea. At the surface, the meter indicates a pressure of 100 kPa. The density of seawater is 1030 kg m⁻³.

D 1270 m

What is the depth below the surface when the meter reads 450 kPa? A 34.6 m $$\rm B$$ 44.5 m $$\rm C$$ 340 m $$\rm D$$ 437 m $$\rm D$$ 437 m

June 08

13. A submarine is in equilibrium in a fully submerged position.

What causes the upthrust on the submarine?

A The air in the submarine is less dense than sea water. B The sea water exerts a greater upward force on the submarine than the weight of the steel.

C The submarine displaces its own volume of sea water.

D There is a difference in water pressure acting on the top and bottom of the submarine

Nov 08

14. Why does an ideal gas exert pressure on its container? A The molecules of the gas collide continually with each other.

B The molecules of the gas collide continually with the walls of the container.

C The molecules of the gas collide inelastically with the walls of the container.

D The weight of the molecules exerts a force on the walls of the container.

June 07

15. The density of mercury is 13.6×10^3 kg m⁻³. The pressure difference between the bottom and the top of a column of mercury is 100 kPa. What is the height of the column? A 0.75 m B 1.3 m C 7.4 m D 72 m

16. The diagram represents a sphere under water. P, Q, R, and S are forces acting on the sphere, due to the pressure of the water.

water surface

Each force acts perpendicularly to the sphere's surface. P and R act in opposite directions vertically. Q and S act in opposite directions horizontally.

Which information about the magnitudes of the forces is correct? BP > R; S = QAP < R; S = Q

C P = R ; S = Q	D P = R = S = C

17. The diagram shows a flask connected to a U-tube containing liquid. The flask contains air at atmospheric pressure.

The flask is now gently heated and the liquid level in the righthand side of the U-tube rises through a distance h. The density of the liquid is ρ .

What is the increase in pressure of the heated air in the flask? A hp B½ hρg C hpg D 2hoa

Nov 09

18. In the kinetic model of gases, what is pressure equal to? A the number of atoms hitting and rebounding from a surface of the gas container

B the number of atoms hitting and rebounding from a unit area of the gas container surface

C the force exerted by the atoms hitting and rebounding from a surface of the gas container

D the force exerted by the atoms hitting and rebounding from a unit area of the gas container surface

19. A rectangular metal bar exerts a pressure of 15 200 Pa on the horizontal surface on which it rests.

If the height of the metal bar is 80 cm, what is the density of the metal?

	_
A 190 kg m ⁻³	B 1900 kg m ^{−3}
C 19 000 kg m ⁻³	D 190 000 kg m ⁻³

June 10

Answers

1 С

2 а

3 С

4

5 С

6 а

7 а

8 С

9 С

10 b

12 а

15 а

b

d 11

d 13 14 b

20. An object, immersed in a liquid in a tank, experiences an upthrust.

What is the physical reason for this upthrust?

A The density of the body differs from that of the liquid.

B The density of the liquid increases with depth.

C The pressure in the liquid increases with depth.

D The value of g in the liquid increases with depth.

21. Atmospheric pressure at sea level has a value of 100 kPa. The density of sea water is 1020 kg m⁻³.

At what depth in the sea would the total pressure be 110 kPa? A 1.0m B 9.8 m C 10 m D 11 m

> а 16

> > b

17 d d

18

19

20 С

21 а